

KESKUSTATUNNELI JA KESKUSTAN LIIKENNESUUNNITELMA

KAUPUNKISUUNNITTELUVIRASTO LIIKENNESUUNNITTELUOSASTO, KAAVOITUSOSASTO
11.6.1998

KAUPUNKISUUNNITTELUVIRASTO 11.6.1998

Liikennesuunnitteluosasto
Katariina Baarman
Matti Hakonen
Aulis Karonen
Leena Saransaari
Kaavoitusosasto
Seija Narvi
Kansi ja havainnekuvat Arkkitehtitoimisto Matti Iiramo

KESKUSTATUNNELI JA KESKUSTAN LIIKENNESUUNNITELMA

SISÄLLYSLUETTELO

Tiivistelmä 1
Keskustatunnelia koskevat päätökset 3
Nykytilanne 3Keskustan liikennemuodotNykytilanteen ongelmat
Keskustatunneli 5
Tutkitut vaihtoehdot
Keskustatunnelin liikennesuunnitelma
Riskianalyysi
Keskustatunneli ja maankäyttö
Keskustatunnelin tekniset ratkaisut
Asiantuntijalausunto
Käyttöjärjestelmä
Keskustan liikennesuunnitelma 13
Maanalaiset liikenneyhteydet
Keskustan liikennesuunnitelma
Liikennemäärät 15
Liikenteen toimivuus
Joukkoliikenne 16
Keskustatunnelin ympäristövaikutukset 16
Liikenneturvallisuus
Vaikutukset ilman laatuun
Vaikutukset liikennemeluun
Kaupunkiympäristö
Luonnonympäristö
Rakennusaikaiset vaikutukset
Ympäristövaikutusten arviointimenettely
Keskustatunnelin kustannukset 20
Keskustatunnelin liikennetaloudelliset vaikutukset
Aikataulu ja toteuttaminen 22

KESKUSTATUNNELI JA KESKUSTAN LIIKENNESUUNNITELMA

Tiivistelmä

Keskustatunneli on kantakaupungin liikennejärjestelmän osa, joka kokoaa liikennettä katuverkosta ja johtaa sen pysäköintilaitoksiin ja huoltotiloihin. Liikenne katuverkossa vähenee ja joukkoliikenne nopeutuu. Suurin hyöty Keskustatunnelin rakentamisesta koituu jalankulkijoille ja katuympäristölle. Keskustan arkiviihtyvyyttä voidaan merkittävästi parantaa. Keskustan saavutettavuus myös henkilöautoilla paranee.

Suunnitelman mukainen Keskustatunneli alkaa Porkkalankadulta ja päättyy Sörnäisten rantatielle. Sillä on katuliittymät Rautatiekaduille, Tölö̈nlahdenkadulle ja Unioninkadulle. Maanalaiset liittymät ovat Elielinaukion pysäköintiin ja huoltotunneliin sekä Rautatientorin alaiseen pysäköintiin ja huoltotunneliin. Pysäköintilaitos Forumiin on yhteys Rautatiekaduilta Jaakonkadun rampin kautta.

Keskustatunneli on keskiosaltaan 2+2-kaistainen. Länsipää on $1+2$-kaistainen ja itäpää sekä rampit pääosin 1+1-kaistaisia. Tunnelin koko pituus on $3,1 \mathrm{~km}$. Keskustatunnelin liikennemäärä on suurimmillaan 50700 ajoneuvoa vuorokaudessa ratapihan alituksen kohdalla.

Lännessä Porkkalankadun ja Mannerheimintien välillä tunneli sijoittuu nykyiseen kalliopohjaiseen satamaratakuiluun eikä sen rakentamisessa ole ongelmia. Keskiosalla Töölönlahden alueella ja rautatien alituksen kohdalla pohjaolosuhteet ovat vaativat, mutta ratkaisu on teknisesti toteutettavissa. Ko. osuus on kallista rakentaa. Kaisaniemen puiston alueella tunneli on pääosin kalliossa ja alittaa Siltavuorensalmen teräsbetonirakenteisena tunnelina meren pohjassa. Kalliotunneliosuus on edullista rakentaa.

Keskustatunnelin rakentamiskustannukset ovat noin 700 Mmk ilman arvonlisäveroa ja 15% :n ALV:llä 805 Mmk . Käyttökustannukset ovat 10 Mmk vuodessa.

Keskustatunnelin antamia mahdollisuuksia keskustan liikennejärjestelyiden kehittämiseksi on tutkittu ja laadittu keskustan liikennesuunnitelma. Siinä on esitetty katujärjestelyiden lisäksi myös maanalaiset huolto- ja pysäköintiliikenteen järjestelyt.

Esitetyt liikenneratkaisut muuttavat merkittävästi Helsingin ydinkeskustan yleisilmettä. Autoliikenteen siirtyessä lähes kokonaan maan alle ydinkeskusta muuttuu ihmisläheiseksi ja viihtyisäksi kävelykeskustaksi. Sellaisiin
on jo totuttu muissa Euroopan kaupungeissa. Helsingin asema ja merkitys kansainvälistyvässä maailmassa kasvaa. Myös Helsingin keskustan kilpailukyky aluekeskuksiin ja automarketteihin nähden paranee.

Jalankulkijan asema ja liikenneturvallisuus paranevat. Tämä voidaan todeta erityisesti ydinkeskustan vilkkaimmilla alueilla, rautatieaseman ympäristössä, Simonkatu - Kaivokatu - Kaisaniemenkatu -akselilla sekä Keskuskadulla. Myös muualla keskustan alueella liikenneturvallisuus paranee.

Polkupyörä̈ilijöiden olosuhteet keskustassa paranevat. Pyöräteistä ja pyörien pysäköinnistä laaditaan myöhemmin erillinen suunnitelma.

Linja-autoliikenne ja raitioliikenne nopeutuvat keskustan katuverkossa, kun autoliikenne vähenee. Uusien keskustan läpikulkevien linjojen perustaminen on mahdollista sekä katutasossa että Keskustatunnelin kautta. Eräillä kaduilla, kuten Bulevardilla ja Rautatiekaduilla, liikenteen lisääntyminen hidastaa joukkoliikennettä.

Kävelykeskustan reunoille sijoittuvat suuret pysäköintilaitokset siten, että keskustan saavutettavuus henkilöautolla eri suunnista on hyvä. Ydinkeskustaan muodostuu kävelyalue, jota autoliikenne joutuu kiertämään ja matkat eräin osin pitenevät. Kävelyalueelta katutason pysäköintipaikat siirtyvät maanalaisiin laitoksiin ja kävelyalueen reunoille. Ydinkeskustan ulkopuolella katuverkossa liikkuva liikenne keskimäärin nopeutuu.

Jakeluliikenne nopeutuu ja sen olosuhteet paranevat oman maanalaisen tunneliverkoston ja uusien purku- ja lastaustilojen ansiosta. Myös pintakatuverkkoon jäävän jakeluliikenteen asema paranee, kun muu liikenne vähenee.

Keskustatunneli vaikuttaa pääosin myönteisesti kaupunkiympäristöön. Kaduilla, joilla liikenne vähenee tai poistuu kokonaan, voidaan tehdä merkittäviä ympäristön parantamistoimenpiteitä. Ilman laatu paranee ja melu vähenee. Eräillä kaduilla kuten Rautatiekaduilla liikenteen lisääntyminen aiheuttaa haittoja. Katualueen leveys mahdollistaa kadun ilmeen muuttamisen puistokatumaiseksi ja nykyinen satamaratakuilu poistuu.

Keskustatunneli hankkeena ei ole uusi, se on ollut eri muodoissaan vireillä jo vuosien ajan. Esillä on ollut useita vaihtoehtoja, joista on pyydetty lausuntoja ja joita on esitelty eri tilaisuuksissa. Suunnittelu on ollut vuorovaikutteista ja asukkaiden ja muiden asianosaisten mielipiteitä on otettu huomioon. Nyt laadittu suunnitelma on kehittynyt vastaamaan mahdollisimman pitkälle sekä liikenteen toiminnallisia vaatimuksia että ympäristön asettamia ehtoja.

KESKUSTATUNNELI JA KESKUSTAN LIIKENNESUUNNITELMA

Keskustatunnelia koskevat päätökset

Kaupunginvaltuuston 9.12 .1992 hyväksymässä Helsingin yleiskaavassa on esitetty tilavaraus keskustan alittavalle pääkatuluokkaiselle tunneliväylälle välillä Mechelininkatu Sörnäisten rantatie.

Keskustan ja Kamppi-Töölönlahti -alueen suunnitteluun liittyen on vuosina 1993-97 laadittu useita linjaukseltaan, pituudeltaan ja katuluokaltaan erilaisia Keskustatunnelivaihtoehtoja. Niissä on tutkittu myös tunnelin sijoittumista katutason alle ja syvälle kallioon.

Kaupunkisuunnittelulautakunta merkitsi 17.10.1996 tiedoksi vaihtoehtoselvityksen (mini, midi ja maksi) ja pyysi siitä lausunnot kaupungin hallintokunnilta, asukasyhdistyksiltä ja muilta asianosaisilta.

Lausuntojen pohjalta laadittiin Keskustatunnelin suunnitelma välille Sörnäisten rantatie Länsiväylä ja siihen liittyvä keskustan liikennesuunnitelma. Kaupunkisuunnittelulautakunta päätti 9.10.1997 merkitä suunnitelmat tiedoksi ja pyytää lausunnot kaupungin hallintokunnilta, asukasyhdistyksiltä ja muilta asianosaisilta.

Em. suunnitelmista on saapunut yhteensä 84 lausuntoa tai muuta kannanottoa. Lisäksi asiaa on esitelty useissa asukastilaisuuksissa. Nyt laadittu Keskustatunnelisuunnitelma on kehitetty lausuntojen pohjalta.

Kaupunkisuunnittelulautakunta päätti 11.6.1998 esittää kaupunginhallitukselle, että Keskustatunnelin liikennesuunnitelma, piirustus nro 4593-7 hyväksytään ja että keskustan liikennesuunnitelma, piirustukset nro 45947 ja 4595-7 hyväksytään jatkosuunnittelun pohjaksi.

Nykytilanne

Keskustan liikennemuodot

Helsingin niemi on Hesperiankatujen, sisälahtien ja meren rajaama alue. Niemen rajan ylittävästä ajoneuvoliikenteestä varsin pieni osa, 18% päättyy ydinkeskustaan, joten henkilöautoliikenteen rooli ei siellä ole merkittävä.

Niemen rajan ylittävästä liikenteestä paäosa, 58% päättyy muualle niemen alueelle kuten Etu-Töölöön, Kruununhakaan, Kamppiin ja Eiraan. Läpikulkevan liikenteen osuus on 24%.

Jalankulkuliikenteen painopiste on selvästi ydinkeskustassa, Mannerheimintiellä, Aleksanterinkadulla, Keskuskadulla, Mikonkadulla, Yliopiston-
kadulla ja joukkoliikenneterminaalien ympäristössä. Ydinkeskustan ulkopuolella jalankulkijamäärät vähenevät selvästi.

Helsingin ydinkeskustan liikkeiden asiakkaita on tutkittu haastattelemalla. Suurin osa ydinkeskustan kauppoja kiertävistä asiakkaista (63\%) on tullut joukkoliikenteellä. Se pystyy kokoamaan pienelle alueelle valtavat ihmismäärät, keskustan varsinaiset käyttäjät, jotka saavat aikaan sen vilkkaan katuelämän. Joukkoliikenteellä tulleilta kertyy myös suurin osa kauppiaiden saamista markoista (58\%), vaikkakin autolla tulleiden keskimääräiset ostokset ovat suuremmat.

Syynä keskustaan lähtöön on useimmille ostoksille tulo, mutta myös työ ja ajan vietto. Joukkoliikenteellä tulleet kulkevat kaupasta toiseen, tekevät paljon pieniä ostoksia, mutta myös suuria yhtä paljon kuin autolla tulleet.

Keskustan asiakkaista 18% ilmoitti tulleensa keskustaan henkilöautolla. Autolla liikkuvat ostavat kerralla enemmän kuin joukkoliikenteellä, kävellen tai pyörällä tulleet ja heidän osuutensa kauppiaiden saamista markoista on 26%. Keskimäärin asioidaan kolmesta neljään eri liikkeessä ja liikkeestä toiseen kävellään. Lähes puolet autoilijoista käytti keskustan pysäköintilaitoksia, kolmasosa kadunvarsipaikkoja ja loput työpaikan pysäköintiä tai jätti auton ydinkeskustan ulkopuolelle.

Saman verran kuin autolla tulleita on niitä, jotka asuvat sen verran lähellä, että he pääsevät helposti keskustan kauppoihin kävellen tai pyörällä (19\%). Heille keskustan kaupoissa käynti on osa arkielämää. Kauppoihin pistäydytään vaikkapa ulkoilun tai kahvilassa käynnin lomassa. He eivät osta yhdestä liikkeestä kerralla kovin paljon, mutta käyvät monessa liikkeessä.

Ydinkeskustasta on tullut erikoiskaupan keskus mutta samalla myös huvittelun, ajanvieton ja sosiaalisen kanssakäymisen keskus. Ostoksilla olo on osa vapaa-ajan viettoa. Keskustan saavutettavuuden parantaminen eri kulkumuodoilla ja alueen sisällä liikkumisen mukavuus lisäävät entisestään keskustan vetovoimaa.

Nykytilanteen ongelmat

Helsingin keskustan maantieteellinen sijainti niemellä aiheuttaa liikenteen järjestelyille tavallista suurempia vaatimuksia. Keskustan alueella liikenteen ongelmat keskittyvät linjalle Simonkatu - Kaivokatu-Kaisaniemenkatu. Kun joukkoliikenteen terminaalit sijaitsevat tämän katujakson pohjoispuolella ja ydinkeskusta sen eteläpuolella, suuri jalankulkijavirta ylittää kadun samassa tasossa ajoneuvoliikenteen kanssa.

Kaivokadulla on 29000 ajoneuvoa vuorokaudessa ja sen ylittää lähes 100 000 jalankulkijaa päivittäin. Jalankulkijoiden määrä kasvaa vielä tuntuvasti, kun Elielinaukion terminaali ja rautatien lähiliikenteen läntiset lisäraiteet otetaan käyttöön.

Jalankulkuvirtojen ja ajoneuvoliikenteen risteäminen aiheuttaa paljon onnettomuuksia. Kaivokatu on jalankulkijaonnettomuuksiltaan kaupungin pahin; vuosina 1992-97 sattui yhteensä 39 loukkaantumiseen johtanutta jalankulkijaonnettomuutta.

Ratkaisuna keskustan ongelmiin on nähty keskustan alittava tunnelikatu, jolle ajoneuvoliikennettä siirretään.

Keskustatunneli

Tutkitut vaihtoehdot

Keskustatunnelin linjaukselle on useissa suunnitteluvaiheissa etsitty sopivaa ratkaisua. Huomioon otettavia asioita on ollut useita: liikenteelliset vaikutukset, sopiminen maankäyttöön ja ympäristöön, maaperä, olemassaolevat ja suunnitellut maanalaiset tilat sekä kustannukset.

Aiemmin on Tölölönlahden osalta ollut esillä kalliossa kulkeva syvätunnelivaihtoehto, johon eräissä lausunnoissakin on viitattu. Sinällään kalliotunnelin rakentaminen on kustannuksiltaan edullisempaa kuin teräsbetonirakenteisen tunnelin. Syvätunnelin etuna on myös se, että sillä ei ole vaikutusta pinnassa olevaan maankäyttöön ja se on toteutettavissa muusta rakentamisesta riippumatta.

Syvätunnelin haittana on yhteyksien järjestäminen katutasoon ja olemassaoleviin pysäköintilaitoksiin. Kallion pinta on Töölönlahden alueella Nykytaiteen museon ja rautatieaseman pohjoispuolella syvimmillään -15. Alhaalla tasossa - 28 kulkeva kalliokattoinen tunneli johtaisi Töölönlahdella noin 400 metrin pituiseen ramppiyhteyteen, jotta saavutettaisiin maanpinta +3 .

Syvätunneli ei voisi myöskään hyödyntää satamaradan kuilua. Rautatiekaduille tunnelista ei saataisi yhteyttä ennen Leppäsuota eikä se siten palvelisi Kampin ja Töölön maankäyttöä.

Esitetyssä suunnitelmassa tunneli on linjattu kallioon siellä, missä kallion pinta on korkealla eli Kruununhaan ja Kaisaniemen alueella. Töölönlahden alueella lähellä maan pintaa kulkevasta tunnelista on helppo, vaikkakin teknisesti vaativaa, järjestää yhteydet pintakatuverkkoon ja Elielinaukion alaisiin pysäköinti- ja huoltotiloihin.

Lähellä maan pintaa kulkevasta tunnelista on myös helpompi järjestää raitisilman otto, poistoilma, savunpoisto ja varaportaat.

Keskustatunnelin liikennesuunnitelma

Keskustatunneli on kantakaupungin liikennejärjestelmän osa, joka kokoaa liikennettä katuverkosta ja johtaa sen pysäköintilaitoksiin ja huoltotiloihin. Liikenne katuverkossa vähenee ja joukkoliikenne nopeutuu. Suurin hyöty Keskustatunnelin rakentamisesta koituu jalankulkijoille ja katuympäristölle. Keskustan arkiviihtyvyyttä voidaan merkittävästi parantaa. Keskustan saavutettavuus myös henkilöautoilla paranee.

Liikennesuunnitteluosastolla on laadittu Keskustatunnelin liikennesuunnitelma, piirustus nro 4593-7.

Suunnitelman mukainen Keskustatunneli alkaa Porkkalankadulta ja päättyy Sörnäisten rantatielle. Sillä on katuliittymät Rautatiekaduille, Töölönlahdenkadulle ja Unioninkadulle. Maanalaiset liittymät ovat Elielinaukion pysäköintiin ja huoltotunneliin sekä Rautatientorin alaiseen pysäköintiin ja huoltotunneliin. Pysäköintilaitos Forumiin on yhteys Rautatiekaduilta Jaakonkadun rampin kautta.

Länsipäässä tunneli sijoittuu nykyiseen satamaratakuiluun. Se alittaa Mechelininkadun ja nousee pintaan Porkkalankadulla $1+2$-kaistaisena. Suunnitelmaan sisältyy Porkkalankadun sillan purkaminen ja Porkkalankadun ja Mechelininkadun uusi tasoliittymä.

Tunneli on keskiosaltaan Töölönlahden, ratapihan ja Kaisaniemen puiston alueella $2+2$-kaistainen.

Itäosa Sörnäisten rantatielle on $1+1$-kaistainen merenalainen tunneliosuus, joka nousee pintaan ennen Haapaniemenkatua.

Kaikki tunnelin liittymärampit, Rautatiekaduilla, Unioninkadulla ja Töölönlahdenkadulla, ovat $1+1$-kaistaisia. Tunnelin maanalaiset liittymät Töölönlahdelle ja Rautatientorille on esitetty kiertoliittyminä. Suunnitelmat tarkentuvat tältä osin rakennussuunnitteluvaiheessa.

Keskustatunneli on katuluokaltaan keskustan pääkatu. Sen nopeusrajoitus on $50 \mathrm{~km} / \mathrm{h}$.

Keskustatunnelin kokonaispituus ramppeineen tulee olemaan 3,1 km. Tästä kalliotunnelia on $0,8 \mathrm{~km}$ ja teräsbetonirakenteista tunnelia $2,3 \mathrm{~km}$.

Tunnelissa pituuskaltevuuden enimmäisarvona on käytetty 6,5 prosenttia ja rampeissa 7 - 8 prosenttia. Tunnelin poikkileikkaus vaihtelee kaistamääristä ja sijainnista riippuen. Pitkillä osuuksilla ajokaistan reunaan on varattu 1,5 metrin tila pysähtymään joutuville ajoneuvoille. Tunnelin korkeudessa on varauduttu 4,6 metrin vapaaseen alikulkukorkeuteen. Sen yläpuolelle sijoittuvat ilmanvaihtokanavat ja opasteet. Tunnelin sisäkorkeus on

Nykyiset katujärjestelyt Rautatiekaduilla

Keskustatunnelin ramppi Rautatiekatujen puistokadulla
tällöin 6,0 metriä. Käytetyt poikkileikkaukset on esitetty liitteenä olevassa kuvassa.

Keskustatunneli toteutetaan yhtäjaksoisesti. Satamaradan poistumisajankohdasta johtuen rakentaminen aloitetaan itäpäästä.

Riskianalyysi

Liikennesuunnitteluosasto teetti kevään 1998 aikana Keskustatunnelin riskianalyysin Traficon Oy:llä, jolla oli alikonsultteina norjalaiset Vianova As ja Technoconsult As.

Riskianalyysissä tarkasteltiin ehdotetun Keskustatunnelin odotettavissa olevia onnettomuuksia ja muita tapahtumia, liikenteen valvonta- ja ohjausjärjestelmää, tunnelin geometriaa sekä näkökohtia ilmanvaihdon ja pelastustoimen suhteen.

Odotettavissa olevien tapahtumien määrä vuodessa keskimäärin koko tunnelissa on:
henkilövahinko-onnettomuudet 6,5
onnettomuudet, aineellinen vahinko 22,2
pysähtyneet ajoneuvot 268
autopalot 0,454

Tunnelille laaditaan varautumissuunnitelma, jotta kaikki odotettavissa olevat tapahtumat voidaan hoitaa. Tunneli on varustettava pitkälle automatisoidulla liikenteenohjausjärjestelmällä, jota valvotaan ympäri vuorokauden.

Tunnelin keskellä olevat tasoliittymät on tässä vaiheessa esitetty kiertoliittyminä, koska valo-ohjatuista tasoliittymistä tunneleissa ei ole riittävästi tietoa. Kiertoliittymillä on yleensä (Norjassa) pienempi onnettomuusriski kuin muilla liittymätyypeillä. Kiertoliittymän vaikutus turvallisuuteen tulee kuitenkin arvioida tapauskohtaisesti. Kiertoliittymät ovat varsin yleisiä kaikkialla Norjassa ja niistä on hyviä kokemuksia myös tunneleissa. Meillä Suomessa ne ovat vielä perin harvinaisia.

Kiertoliittymällä on myös suuri vaikutus liikennöitävyyteen, koska välityskyky on suurempi kuin valoliittymällä. Jonot jakautuvat tasaisemmin tulosuuntien kesken ja jäävät lyhyemmiksi. Pysähtymään joutuvien osuus pienenee, mikä vaikuttaa myös ilmanvaihtoon. Ajonopeudet ovat pienemmät.

Riskianalyysissä esitettyjä näkökohtia tunnelin geometriasta kuten näkemäleikkauksista, kaistamääristä, kaistalevennyksistä ja pientareista on otettu huomioon ja Keskustatunnelin liikennesuunnitelmaa on tarkistettu tältä osin.

Keskustatunneli ja maankäyttö

Helsingin historiallinen ja elinvoimainen keskus sijaitsee Hesperiankatujen, sisälahtien ja meren rajaaman niemen alueella. Keskuksen sijainti on ainutlaatuinen ja merellinen mutta toisaalta ongelmallinen; tilaa on keskus\tan kasvua ja toimintoja ajatellen rajoitetusti. Varsinkin liikenteen järjestelyt ovat vaatineet suhteellisen kalliita ja suurpiirteisiä ratkaisuja kuten metron rakentamisen.

Keskusta on parhaillaan laajentumassa itään Sörnäisiin ja länteen Ruoholahteen. Tämä muutos vielä voimistuu jos satamatoiminnot siirtyvät Vuosaareen ja nykyisten satama-alueiden maankäyttö muuttuu. Tällöin keskustasta tulee eräänlainen nauhakaupunki. Tämän toimivuuden turvaamiseksi tarvitaan metron lisäksi myös hyvä ajoneuvoliikenteen yhteys, joksi Keskustatunneli sopii erittäin hyvin.

Keskustatunnelin linjan lähellä on olemassa olevia, suunniteltuja ja eri kaavoitusvaiheessa olevia rakennuksia ja muuta maankäyttöä, mikä pitää ottaa huomioon jatkosuunnittelussa.

Keskustatunneliin liittyvä Porkkalankadun ja Mechelininkadun uusi tasoliittymä vaikuttaa Mechelininkadun itäpuolisen tontin rajoihin ja rakennuksen suunnitteluun.

Marian sairaalan kohdalla satamaradan ja muiden raiteiden poistuminen antaa mahdollisuuksia uudelle maankäytölle noin 5000 neliömetrin alueella. Tunneli sijoittuu katettuna alueen alle.

Keskustatunneli sijoittuu osin Eteläisen Rautatiekadun varrella olevan AKS-tontin alle, joka sisältyy Leppäsuon asemakaavaan. Tämä pitää ottaa huomioon jatkosuunnittelussa.

Eduskunnan virastotalon suunnittelukilpailun lähtökohdissa on todettu Keskustatunnelin sijoittuminen Eduskuntatalon ja sen lisärakennuksen väliin $2+2$-kaistaisena tasolle $+2 \ldots+4$. Jalankulkuyhteys Eduskuntatalolta lisärakennukseen rakennetaan Keskustatunnelin ali.

Mannerheimintien varrelle kaavaillun Musiikkitalon suunnittelussa varaudutaan Keskustatunnelin sijoittumiseen rakennuksen eteläpuolelle tasolle -4.

Tunnelin seinärakenteiden etäisyys Nykytaiteen museosta on noin 10 metriä ja Sanomatalosta 30-40 metriä. Tunnelin rakentamisella ei ole vaikutusta uudisrakennusten rakenteisiin. Sanoman pysäköintiin johtavan tasolla -2.6 olevan ajoyhteyden vuoksi tunnelia on siirretty aiempaa pohjoisemmaksi. Vuonna 1998 rakennettava Elielinaukion pysäköintilaitokseen ja Asema-aukion huoltotunneliin johtava ramppi korvataan uudella Keskustatunnelin pohjoispuolelle sijoittuvalla rampilla.

Töölönlahden alueella tunneli sijoittuu osittain asemakaavaluonnoksen mukaisten Töölönlahdenkadun molemmin puolin suunniteltujen kortteleiden ja puistoalueen alle tasolle -4.

Unioninkadun liittymä sijoittuu Unioninkatu 43:ssa olevalle tontille. Ajoyhteys on teknisesti mahdollinen mutta edellyttää tontilla olevan rakennuksen purkamisen. Tontille rampin päälle on mahdollista rakentaa uudisrakennus.

Sörnäisten rantatiellä tunneli nousee pintaan Hakaniemenrannan uuden mahdollisesti rakennettavan alueen jälkeen ja sen vierestä.

Keskustatunnelin tekniset ratkaisut

Pohjasuhteet

Kallioista ja hyväpohjaista aluetta on Kampin ja Kruununhaan alueella. Lieju- ja savikerrostumia on Töölönlahden ja Siltavuorensalmen alueella. Ylimmillään kallionpinta on Kampissa ja Kruununhaassa tason +20 yläpuolella ja alimmillaan entisen Kluuvinlahden alueella noin tasolla - 30 ja Siltavuorensalmessa noin -20.

Kallioisella alueella Kampissa on ohuita täyte-, savi-ja kitkamaakerrostumia. Töölönlahden alueella on paksuja täyte-, savi- ja kitkamaakerrostumia. Enimmillään kerrospaksuus on tunnelin kohdalla 15 metriä. Painanteessa kallion laadun arvellaan olevan rikkoutunutta ja rapautunutta.

Kaisaniemen puiston kohta on hyvää kalliota. Unioninkadun ja Liisankadun risteyksessä on heikkousvyöhyke. Siltavuori on kallioista aluetta. Siltavuorensalmessa maakerrosten paksuus on enimmillään noin 10 metriä. Sörnäisten rantatien risteyksen kohdalla kallioperässä on ruhje.

Töölönlahden alue on pohjavesiriskialuetta, jossa mm. Rautatieasema, Postitalo ja Kansallisteatteri on perustettu puupaaluilla. Pohjavedenpinta on alueella lähellä maanpintaa, eikä vedenpinta saa laskea työn aikana eikä lopputilanteessa.

Tunnelin rakennettavuus

Porkkalankadun ja Mannerheimintien välillä tunneli sijoittuu nykyiseen kalliopohjaiseen satamaratakuiluun, jota joudutaan paikoin leventämään louhimalla tai kaivamalla sijainnista riippuen. Tunnelin seinät ja katto rakennetaan teräsbetonirakenteisena ja Rautatiekadut muutetaan puistokaduksi. Ratakuilussa tunneli on katettu koko matkan. Eduskuntatalon lisärakennuksen ja tunnelin eteläpuolisen seinän välille on jätetty 5 metriä työtilaa, jotta tunneli voidaan rakentaa jälkeenpäin.

Tunneli kulkee Töölönlahden alueella pinnassa lattiatason ollessa -4 , kun maanpinta on tasolla +3 . Pohjaolosuhteet ovat Töölönlahden alueella vaativat. Syynä ovat huono maaperä ja viereisten suojeltujen rakennusten puupaaluperustukset, joiden tulee säilyä pohjaveden pinnan alla kaikissa olosuhteissa.

Tunnelin rakentaminen pintaan Töölönlahden alueella asettaa rajoituksia päälle rakentamiselle, verkostojen toteuttamiselle, mahdollisille vesiaiheille ja puiden istuttamiselle. Asiat ovat kuitenkin ratkaistavissa.

Tunnelin rakentamisessa on otettava huomioon myös Nykytaiteen museon paaluperustukset. Tulevan Musiikkitalon ja tunnelin pohjoispuolisen seinän välillä tulee olla etäisyyttä 10 metriä, jotta Keskustatunneli voidaan rakentaa. Linjaus on suunniteltu sen mukaisesti.

Tunnelin tasoliittymän kohdalla jännevälit ovat pitkiä, mikä vaikeuttaa toteuttamista ja nostaa rakennekorkeuksia. Myös ilmanvaihdon ja savunpoiston osalta liittymäalueen rakenneratkaisuja tulee vielä kehittää.

Rautatiealue on suunniteltu tehtäväksi päältä avaamalla käyttäen VR:n nykyisiä 20 metrin apusiltoja. Apusillat perustetaan pääosin paaluilla tai suoraan kallioon. Rautatiealueen kohta on vaikea ja kallis rakentaa koska rautatieliikenteen on voitava toimia keskeytyksettä rakentamisen aikana. Aluetta koskevat samat ehdot pohjavedestä kuin Töölönlahden kohtaakin.

Rautatien alituksen rakentamisen vaiheet ovat pääpiirteissään seuraavat. Tunnelin molemmin puolin lyödään vesitiivis ponttiseinä junakatkojen aikana. Apusilloille tehdään perustukset ja sillat asennetaan ratojen kohdalle junakatkojen aikana. Suoritetaan tarpeelliset kaivu-, louhinta- ja tiivistystyöt apusiltojen alla. Rakennetaan tunnelin toinen puolisko väliseinä mukaan lukien apusiltojen alla. Siirretään apusillat toisen tunnelipuoliskon kohdalle. Rakennetaan toinen tunnelipuolisko edellisen viereen apusiltojen alla. Apusiltojen lisäksi tarvitaan laitureiden kohdalle kevytrakenteiset sillat matkustajille ja huoltoliikenteelle.

Kaisaniemen puiston alueella tunneli on pääosin kalliossa, jolloin rautatiealueen itäosaa, Kaisaniemenpuistoa ja urheilukentän aluetta ei tarvitse avata päältä. Kalliotunneli on selvästi halvempi ratkaisu kuin teräsbetonirakenteinen tunneli. Unioninkadun ajoyhteys sijaitsee mahdollisen tulevan rakennuksen alla lähellä maan pintaa ja on teknisesti mahdollinen.

Unioninkadun länsipuolella Kaisaniemen puiston alueella kallion pinta on tasolla $+-0 \ldots-10$. Maan pinta on tasolla +4 . Maakerroksia on päällä noin 10 metriä. Kalliopinnan korkeusasemasta ja laadusta on tehtävä tarkempia tutkimuksia, ennen kuin selviää, miten pitkälle tunneli voidaan toteuttaa kalliokattoisena. Kyseinen kohta on rakennettavissa pääläa avaamatta ns. kilpitekniikalla. Ratkaisu on kallis ja vaativa toteuttaa. Ulkomailla mm. Tukholmassa on käytetty ko. tekniikkaa.

Jatke Sörnäisten rantatielle on Siltavuorenrantaan asti kalliotunnelia. Tunneli jatkuu teräsbetonirakenteisena merenlahden pohjan maakerroksissa ja Hakaniemen puoleisella osuudella. Meren alittavalta osalta on laadittu erillisselvitys. Sen mukaan kalliotunneli sinänsä on halvempi kuin maakerroksiin sijoittuva ratkaisu. Tunnelin lyhetessä vaihtoehdoilla ei ole oleellisia kustannuseroja. Liikenteellisesti lyhyempi tunneli on parempi, koska Haapaniemenkadun kautta saavutetaan yhteys Kallioon.

Tunnelin linjaus sijoittuu mahdollisen Hakaniemenrannan uuden rakennettavan alueen viereen. Tämä vaikuttaa uudisrakennuksen rakenneratkaisuihin.

Alueella olevat maanalaiset tilat

Keskustatunnelin läheisyydessä on olemassa olevia maanalaisia tiloja mm. metro, väestönsuojia, yhteiskäyttötunneli, viemäritunneleita ja kaukolämpöjohtotunneli sekä syviä kellareita. Lisäksi keskustan alueella on eri suunnitteluvaiheessa olevia maanalaisia hankkeita ja tilantarpeita. Nämä kaikki on otettu huomioon tunnelin linjauksessa.

Rakenteellinen paloturvallisuus

Keskustatunnelin suunnittelussa on otettu huomioon pelastuslaitoksen vaatimukset rakenteellisesta paloturvallisuudesta. Ratkaisussa on päädytty ns. kaksoistunnelijärjestelmään koko tunnelin pituudelta.

Turvallisuussyistä henkilöille järjestetään hätäpoistumistumistie 100 metrin välein toiseen tunneliin. Ajoneuvoille rakennetaan yhteys toiseen tunneliin 400 metrin välein. Henkilöille järjestetään yhteys pintaan 400 metrin välein. Savunpoistokuilu rakennetaan 400 metrin välein.

Asiantuntijalausunto

Liikennesuunnitteluosasto tilasi ja sai 10.6.1998 lausunnon Keskustatunnelin rakennettavuudesta Fundus Oy:ltä (Ragnar Wikström). Lausunnossa todetaan mm.:
"Toimeksiannosta olen syventynyt kaupunkisuunnitteluviraston 28.5.1998 laatimaan "Keskustatunneli ja keskustan liikennesuunnitelmaan" sekä 1997-98 saatuihin lausuntoihin. Tarkasteluni pohjautuu vuodesta 1964 alkaen syntyneeseen kokemukseen sekä urakoitsijana että suunnittelijana. Olen osallistunut lähes kaikkiin Helsingin syviin kaivantoihin ja metroon, työskennellyt sekä Sveitsin moottoritieprojekteissa että mm . Tukholman Tunnelbanan ja Ringenin erikoiskohteissa.

Esitetyssä Keskustatunnelin suunnitelmassa on lähdetty tavanomaisista rakenneratkaisuista hyväksikäyttäen nykyaikaisia pohjarakennusmenetel-
miä. Missään kohdassa ei ole lähdetty ottamaan riskiä tai valittu mielettömiä ratkaisuja.

Tunnelihanke voidaan toteuttaa vaarantamatta ympäristöä. Tarkalla suunnittelulla ja valvonnalla Keskustatunneli pystytään pohjaveden suhteen viemään läpi, kuten aikoinaan metrotunnelit ja asemat.

Tunnelin painaminen kokonaan kallioon olisi järkevää, mikäli kyse olisi maantietunnelista. Keskustatunneli on kuitenkin maanalainen katu, jonka tehtävänä on liittää eri alueita ja toimintoja, jolloin on päästävä maan pintaan tietyissä kohdissa. Tällöin päädytään samoihin pohjarakennusratkaisuihin, kuten nyt esitetyssä suunnitelmassa.

On väärin uskoa, ettei kalliotunneliratkaisuissa ole riskinottoa. Ruotsalaisen asiantuntijan Örjan Sjöströmin mukaan unohtuu "hyvässä" kalliossa varovaisuus ja herkästi syntyy laiminlyöntejä.

Kalliotunnelissa ovat riskialueina esim. ruhjevyöhykkeet. Todennäköisesti on Kluuvin ja Siltavuorensalmen rotkoissa sellaiset. Metron Kluuvin ruhje ei ollut yksinkertainen tehtävä. Piilossa olevat savivyöhykkeet saattavat työn aikana tai vuosien kuluessa yllättää. Vakavina esimerkkeinä meillä on Kluuvin huoltotunneli, Annalavuoren viemäritunneli ja Päijännetunneli. Sen sijaan hyvin rakennettu, tarkastettu ja tarvittaessa vahvistettava betonirakenne on erittäin luotettava pitkäaikainen konstruktio.

Katson kokemukseni ja ammattitaitoni perusteella, että esitetty suunnitelma on sekä teknillisesti että ympäristön kannalta luotettavasti toteutettavissa, enkä pysty löytämään mitään hallitsemattomia riskikohtia. Hankkeen läpiviemiseksi on käytettävissä pätevät suunnittelu-, valvonta-, me-netelmä-ja urakointiresurssit."

Käyttöjärjestelmä

Liikenteen päästöjen aiheuttamien haittojen vähentämiseksi tunneliin tuodaan riittävä määrä raitisilmaa. Ulkoilma tunneliin otetaan suuaukkojen ja ilmanottosäleikköjen kautta, jotka rakennetaan tunnelin keskiosalle lähelle tasoliittymiä.

Hiilimonoksidi- ja typen oksidipitoisuudet ovat mitoittavia tekijöitä liikennetunnelin ilmanvaihdossa. Keskustatunnelin ilmanvaihdoksi sopii kaksoistunnelijärjestelmän vuoksi pitkittäisilmanvaihto. Maanalaiset tasoliittymät vaativat ilmanvaihdon erityistä selvittämistä.

Tunnelien kattoon asennetaan tasavälein impulssipuhaltimia ja poistoilma johdetaan aksiaalipuhaltimien avulla poistopiippuun. Poistoilmapuhaltimien yhteyteen sijoitetaan myös mekaaniset ilmanpuhdistuslaitteet ja puhallinmelun äänenvaimennusrakenteet. Tunneli-ilman päästöjen puhdistus
on teknisesti erittäin vaikeaa ja kallista, koska pakokaasut laimenevat huomattavasti ilmaan sekoittuessaan.

Poistoilma tunnelista johdetaan ulos riittävän korkeiden piippujen avulla, joiden korkeus on 10-15 metriä yli kattotason. Ympäristökeskus määrittelee lopullisen korkeuden tehtävien leviämismalliselvitysten avulla. Tarvittavat tekniset tilat sijoittuvat lähelle poistopiippuja.

Tunneli varustetaan tarpeellisilla turvajärjestelmillä. Niitä ovat paloilmoi-tus- ja hälytysjärjestelmät, sammutusvesijärjestelmä ja sähkönsyöttöjärjestelmä. Lisäksi sinne tarvitaan hätäpuhelimet, savunpoistokoneistot ja vuotovesipumppaamot.

Tunnelin valaistuksen tarkoituksena on taata päivällä ja yöllä sellaiset olot, että ajo tunneliin ja sieltä ulos voi tapahtua turvallisesti ja oikealla nopeudella.

Ohjaus- ja valvontakeskus sisältää liikenteen ohjauksen ja hälytysjärjestelmän. Valvontakameroita asennetaan tunneliin noin 200 metrin välein.

Tunneliin liittyviä maan pinnalla näkyviä rakenteita ovat poistoilmapiiput, raitisilmanotto, savunpoisto ja varaportaat. Näille on esitetty alustavat sijaintipaikat liitteenä olevassa kuvassa.

Keskustan liikennesuunnitelma

Samanaikaisesti Keskustatunnelin suunnitelman kanssa on laadittu koko keskustan kattava liikennesuunnitelma, liikennesuunnitteluosaston piirustus nro 4594-7 ja keskustan maanalaiset jalankulku-, huolto-ja pysäköintiyhteydet, piirustus nro 4595-7. Suunnitelma kuvaa niitä mahdollisuuksia, joita Keskustatunnelin rakentamisella on saavutettavissa ja joista laaditaan myöhemmin erilliset yksityiskohtaiset suunnitelmat.

Keskustan liikennesuunnitelma on Helsingin yleiskaavan 1992 mukainen. Siinä kävelykeskusta on määritelty alueeksi, jonka liikennejärjestelyissä jalankulku asetetaan etusijalle. Yleiskaavassa alueen rajoina ovat Unioninkatu, Esplanadi, Mannerheimintie ja Töölönlahden eteläosa.

Osa maanalaisista huolto- ja pysäköintiratkaisuista ja vastaavista pintakatuverkon muutoksista on toteutettavissa Keskustatunnelista riippumatta.

Maanalaiset liikenneyhteydet

Keskustatunnelista on suora yhteys Töölönlahden liittymän kautta Elielinaukion pysäköintilaitokseen ja Kaivotalolle johtavaan huoltotunneliin.

Keskustatunnelista on suora yhteys myös Rautatientorin alaiseen pysäköintilaitokseen ja edelleen Keskuskadun pohjoispään alaiseen huoltolii-
kenneväylään, johon on liitetty Keskuskadun pohjoispään kortteleiden huolto noin tasolla -2,5. Rautatientorin alainen pysäköintilaitos korvaa Makkaratalon pysäköintilaitoksen.

Yhteydet keskustan suuriin pysäköintilaitoksiin, Forum ja Kluuvi, toimivat pintakatuverkon kautta, mutta liikenne voi osittain hyödyntää Keskustatunnelia.

Kluuvin ja Aleksin alueen korttelit ovat selvittäneet huoltonsa järjestämistä siten, että huolto on keskitetty maanalaiseen huoltotunneliin Kluuvi Stockmann. Tämä ratkaisu on riippumaton Keskusta-tunnelista. Nykyistä Kluuvintunnelia jatketaan Aleksanterinkadun alla kalliossa noin tasolla -30 , tällöin siihen on liitettävissä kaikki korttelit Stockmannille asti. Huoltotunneliin ei liity pysäköintiä lukuun ottamatta pysäköintilaitos Kluuvia.

Stockmannin pysäköintiin johtava ramppi Keskuskadulla on korvattu muuttamalla nykyinen ulosajoramppi Eteläesplanadilla kaksisuuntaiseksi. Tämä ei riipu Keskustatunnelista.

Kluuvin huoltotunnelin liittämistä Keskustatunneliin on tutkittu. Sitä ei ole suunnitelmassa esitetty, koska sen kustannukset ovat suuret ja käyttäjämäärät pienet. Jos Kluuvintunnelin liittäminen katsotaan myöhemmin tarkoituksenmukaiseksi, se on liitettävissä Rautatientorille johtavaan tunneliin.

Keskustan liikennesuunnitelma

Maanalaiset liikennejärjestelyt mahdollistavat katuympäristön parantamisen ydinkeskustassa. Katutasossa ajoneuvoliikenteelle varattua tilaa muutetaan jalankulkutilaksi, lisätään istutuksia ja parannetaan katuympäristön laatutasoa.

Keskustatunnelin vaikutuksesta Kaivokatu rautatieaseman kohdalla on muutettavissa joukkoliikennekaduksi, jolla raitioliikenne ja linja-autoliikenne on sallittu. Rautatieaseman saatto toimii idästä Rautatientori kiertäen, lännestä Asema-aukion kautta ja pohjoisesta Töölönlahdenkadun kautta. Tämä yhteys rakennetaan vuonna 1998.

Rautatientorilta poistuu läpikulkeva liikenne ja itäreunan kortteli on liitettävissä torialueeseen.

Keskuskatu muutetaan kävelykaduksi. Pohjoispään kuusi ramppia voidaan poistaa Keskustatunneliin liittyvien liikennejärjestelyjen ansiosta. Stockmannin ramppi poistuu, kun Aleksin alainen huoltoväylä ja pysäköintilaitoksen ulosajoyhteyden kaksisuuntaistaminen toteutuvat.

Keskustatunnelin vaikutuksesta Esplanadien liikenne vähenee. Pohjoisesplanadin liikenne on esitetty siirrettäväksi Eteläesplanadille välillä Man-
nerheimintie Mikonkatu. Näin yhtenäinen kävelyalue ulottuu rautatieasemalta Ruotsalaisen teatterin ympäristöön. Liikenne johdetaan pääosin Bulevardille. Lönnrotinkatu ja Uudenmaankatu muutetaan kaksisuuntaisiksi ja niiden liikenne vähenee merkittävästi.

Ydinkeskustan kaduilla Aleksanterinkadulla, Kluuvikadulla, Mikonkadulla ja Yliopistonkadulla liikenne vähenee oleellisesti, kun Aleksin alainen huoltoväylă toteutuu.

Eteläinen ja Pohjoinen Rautatiekatu muutetaan puistokaduksi koko pituudeltaan. Ajoradat ja rampit sijoittuvat kadun keskelle. Kummankin korttelirivin puolelle jää tilaa jalkakäytävälle, pyörätielle, kahdelle puuriville ja kadunvarsipysäköinnille.

Liikennemäärät

Liikennemäärät on ennustettu tietokonesimuloinnilla EMME-ohjelmalla. Nykytilanteen EMME-ennuste vastaa varsin hyvin nykytilanteen laskettuja liikennemääriä. Vuonna 2010 nykyverkon liikennemäärä kasvaa niemen rajalla noin 9%. Syynä on mm . Jätkäsaaren rakentaminen asuntoalueeksi ja yleinen elintason kasvu. Keskustatunneli lisää niemen rajan ylittävän liikenteen määrää vain prosentin verran.

Keskustatunnelin ja sen ajoyhteyksien vaikutuksesta liikennemäärät keskustassa eivät lisäänny. Ne siirtyvät tunneliin ja osittain eri kaduille kuin nykyisin. Liikennemäärät nykyisellä katuverkolla vuonna 2010 ja liikennemäärät Keskustatunnelin rakentamisen jälkeen vuonna 2010 sekä liikennemäärien muutokset on esitetty liitteenä olevissa kuvissa. EMME-ennuste ei sisällä linja-autoja.

Kaivokadun liikenne siirtyy kokonaan tunneliin. Esplanadien liikenne vähenee 25%, Helsinginkadun liikenne 20% ja Nordenskiöldinkadun liikenne 10%. Pohjoisempiin poikittaisreitteihin Keskustatunnelilla ei ole vaikutusta. Keskustatunnelin liikennemäärä on suurimmillaan ratapihan alituksen kohdalla 50700 ajoneuvoa vuorokaudessa.

Liikenteen toimivuus

Tunnelin vaikutuksesta liikenteen sujuvuus paranee itä-länsi-suuntaisilla poikittaisreiteillä. Sekä niemen sisäinen, keskustaan suuntautuva että läpikulkuliikenne keskimäärin nopeutuvat. Yleisesti katuverkon ja risteysten välityskyky paranee nykyisestä ja ajosuoritteet pienenevät. Liikennekuormitus jakautuu tasaisemmin katuverkkoon.

Liikenne-ennusteiden pohjalta on tutkittu Keskustatunnelin ja katuliittymien välityskyky huipputuntina. Käyttösuhteella 0.8 liittymä toimii hyvin, 0.9 tyydyttävästi ja 1.0 välttävästi. Käyttösuhteen ollessa yli 1.0 liittymä saattaa ajoittain ruuhkautua.
Porkkalankatu/Mechelininkatu 1.13
Mechelininkatu/Rautatiekadut 0.79
Rautatiekadut/Runeberginkatu 0.87
Rautatiekadut/Fredrikinkatu 0.82
Rautatiekadut/Jaakonkatu 0.95
Töölönlahden liittymä tunnelissa * 0.80
Rautatientorin liittymä tunnelissa * 0.74
Unioninkadun liittymä tunnelista 0.75
Pitkänsillan eteläpää 0.38
Sörnäisten rantatie/Haapaniemenkatu 0.99

* Liittymän toimivuus on tutkittu valo-ohjattuna tasoliittymänä.
Joukkoliikenne

Keskustatunnelilla ei sinällään ole vaikutusta joukkoliikennejärjestelmään. Keskustan linja-autoterminaalit toteutetaan Kamppi-Töölönlahti -alueen suunnitelmien mukaisesti. Raitioliikenteen reitit säilyvät nykyisellään. Oleellista on kuitenkin linja-autoliikenteen ja raitioliikenteen nopeutuminen pintakatuverkossa, kun muu liikenne vähenee.

Kaivokadun muuttuessa joukkoliikennekaduksi tavoitteena on yhdistää nyt keskustaan päättyviä linjoja heilurilinjoiksi. Tämä vähentäisi linja-autoterminaalien laituritarvetta Rautatientorilla, Kampissa ja mahdollisesti Elielinaukiolla.

Seutu- ja paikallisliikenteessä voidaan kehittää keskustan läpi tunnelissa itä-länsisuunnassa kulkevia linjoja, joiden pysäkit olisivat Hakaniemessä ja Kampissa. Keskustatunneliin Töölönlahden alueelle on esitetty kannenalaiset pysäkit, jolloin saavutetaan hyvä vaihtoyhteys rautatieliikenteeseen.

Keskustatunnelin ympäristövaikutukset

Keskustatunnelihankkeella on laajoja vaikutuksia koko keskustan ja myös Ruoholahden ja Sörnäisten alueella. Tämän vuoksi hankkeen ympäristövaikutukset tulee selvittää.

Keskustatunnelin ympäristövaikutukset ovat voittopuolin positiivisia. Koko hankkeen tarkoituksena on ollut vähentää liikennettä pintakatuverkossa, parantaa ympäristöä ja kohentaa keskustan katumiljöötä. Näiden muutosten vuoksi melu ja päästöt vähenevät. Jalankulkijan liikenneturvallisuus paranee erityisesti keskustan vilkkaimmilla jalankulkualueilla.

Hankkeen haitallisiksi ympäristövaikutuksiksi on koettu liikenteen lisääntyminen eräillä kaduilla. Myös tunnelin ajoaukkojen sijoittuminen kaupun-
kikuvaan ja asukkaiden kannalta tärkeille alueille on luokiteltu haitoiksi. Lisäksi ilmanvaihtopiiput ja muut maan pinnalle tulevat rakenteet vaikuttavat ympäristöön.

Liikenneturvallisuus

Keskustatunneli ja keskustan liikennesuunnitelma mahdollistavat erityisesti jalankulkijan turvallisuutta parantavat järjestelyt keskustassa. Suurin vaikutus on Simonkatu -Kaivokatu - Kaisaniemenkatu -akselilla. Jalankulkijaonnettomuudet vähenevät laajalti myös muualla kantakaupungin alueella, missä liikenne vähenee. Onnettomuudet lisääntyvät jonkin verran niillä kaduilla, joilla liikenne lisääntyy.

Keskustatunneliin uutena katuna on odotettavissa uusia onnettomuuksia. Liikennetunnelit eivät ulkomaisten kokemusten mukaan ole turvattomampia kuin vastaavat maanpäälliset väylät. Jalankulkuliikennettä tunnelissa ei ole. Riskianalyysissä on arvioitu Keskustatunnelin onnettomuuksien määräksi 6,5 henkilövahinko-onnettomuutta ja 22,2 aineellisiin vahinkoihin johtanutta onnettomuutta vuodessa.

Kokonaisuutena liikenneonnettomuudet vähenevät merkittävästi. Liitteenä olevissa kuvissa on esitetty nykyiset henkilövahinko-onnettomuudet ja arvio tulevista onnettomuuksista kuvan rajaamalla keskusta-alueella, jolla henkilövahinko-onnettomuuksien on arvioitu vähenevän noin 30%.

Vaikutukset ilman laatuun

Liikenne aiheuttaa keskustan hengitysilman epäpuhtauksista 80-90 \%, koska pakokaasupäästöt purkautuvat matalalta. Energiatuotannon päästöt puolestaan leviävät korkeista piipuista laajalle alueelle.

Nykyisin ilman epäpuhtaudet voivat ylittää niille asetetut enimmäisohjearvot useilla katuosuuksilla epäedullisissa sääolosuhteissa. Etenkin typpioksidipitoisuus ylittää toistuvasti ohjearvot useilla kaduilla kantakaupungissa sekä pääväylien varrella. Häkäpitoisuus vain harvoin ylittää ohjearvot katukuilussakaan.

Vuonna 2010 autokanta on vähäpäästöisempää kuin nykyisin. Tämä näkyy ilmanlaadussa selvimmin häkäpitoisuuden pienentymisenä edelleen nykyisistä pitoisuuksista. Häkäohjearvojen ylittyminen tällöin ei ole todennäköistä huonoimmissakaan olosuhteissa. Liikennemäärä kantakaupungin alueella kasvaa vain vähän nykyisestä vuoteen 2010 mennessä.

Typpioksidipitoisuus hengitysilmassa ei tule pienentymään yhtä selvästi. Tätä pitoisuutta hengitysilmassa säätelevät ilmassa tapahtuvat kemialliset reaktiot enemmän kuin pakokaasujen typen oksidien määrä. Siten on todennäköistä, että pakokaasujen typen oksidien määrän vähentyminen
noin 80 prosentilla vähentää hengitysilman typpioksidipitoisuutta vain noin 20 prosentilla.

Keskustatunnelin vaikutus päästöjen kokonaismäärään on vähäinen. Paikallinen vaikutus hengitysilmassa ydinkeskustan alueella sen sijaan on huomattava. Katutason liikenne Kaivokadulla poistuu ja päästöt siirtyvät tunnelin poistopiippujen välityksellä korkeammalle.

Vaikutukset liikennemeluun

Melutason muutokset ovat alenevia katuverkossa ja jalankulkijan tasolla. Melutason alenemisesta hyötyvät keskustassa liikkuvat ja työskentelevät ihmiset. Asukkaiden kannalta melu vähenee eniten Lönnrotinkadulla, Uudenmaankadulla, Ruoholahdenkadulla, Mechelininkadulla, Runeberginkadulla, Pohjoisrannassa ja Hakaniemessä.

Vaikka melutasot pääasiassa alenevat, voi melu paikallisesti myös kasvaa liikenteen siirtymisen vuoksi. Näin tapahtuu mm. Rautatiekaduilla, jonne on laadittu erillistarkastelu Soundplan-ohjelmalla. Malli ottaa huomioon liikenteen määrän, nopeuden, sijainnin sekä maaston kolmiulotteisena. Melutarkastelu on liitteenä olevassa kuvassa.

Tarkastelu osoitti, että vaikka liikennemäärät kasvavat Rautatiekaduilla noin kaksinkertaiseksi, melu lisääntyy rakennusten seinässä ensimmäisen kerroksen korkeudella vain noin yhden dBA:n. Tämä johtuu siitä, että suunnitelmassa Rautatiekaduilla liikenne siirtyy rakennusten seinistä 8 metriä nykyistä etäämmälle.

Kampin kolmion korttelin kohdalla Rautatiekadut toteutetaan Leppäsuon asemakaavan mukaisesti, jolloin melutaso nykyisestä kasvaa Keskustatunnelista riippumatta.

Kaupunkiympäristö

Kaupunkirakenteessa liikenteen estevaikutuksen poistuminen tai väheneminen on merkittäväa asia jalankulkijan ja pyöräilijän näkökulmasta. Liikkuminen paikasta toiseen on nopeampaa, miellyttävämpää ja turvallisempaa. Kaupungin osa-alueita voidaan yhdistää aivan uudella tavalla toisiinsa.

Liikenteen estevaikutuksen poistaminen on ollut tärkeimpiä syitä kaupunkitunneleiden toteuttamiseen muualla Euroopassa kuten esim. Oslossa, Stuttgartissa ja Dusseldorfissa.

Keskustatunneli mahdollistaa tuntuvat kaupunkiympäristön parantamistoimenpiteet niillä keskustan alueilla, joilla liikenne vähenee tai poistuu kokonaan. Oleskelualueita voidaan lisätä, istuttaa puita ja parantaa ympä-
ristön laatutasoa. Näitä koskevat suunnitelmat laaditaan myöhemmin erikseen.

Keskustatunnelin suurimmat haitalliset vaikutukset kaupunkikuvaan ovat tunnelin suuaukot, ajorampit ja ilmanvaihdon poistoilmapiiput. Raitisilmakuilut, savunpoistokuilut ja varaportaat ovat sen sijaan suhteellisen helposti sovitettavissa ympäristöön.

Poistopiiput sijoittuvat useimmiten suhteellisen luontevasti kaavailtuihin uudisrakennuksiin. Poistoilmapiipuille on pienehköjä varauksia Graniittitalossa ja Presidenttihotellissa. Uusia varauksia voidaan sijoittaa Leppäsuon, Töölönlahden ja Hakaniemenrannan uudisrakennuksiin sekä vanhoihin rakenteisiin Kruununhaassa.

Luonnonympäristö

Luonnonkasvillisuudelle ja eläimistölle Keskustatunnelin vaikutus on vähäinen, koska tunneli sijoittuu rakennetulle alueelle. Kasvitieteellisen puutarhan kaakkoisnurkassa pienellä alueella tunneli voidaan rakentaa päältä avaamatta kalliimmalla rakennustekniikalla kuin päältä avaten. Mikäli päädytään päältä avaamiseen niin ympäristö voidaan palauttaa ennalleen rakentamisen päätyttyä.

Suurin työnjälkeinen ympäristövaikutus on pohjaveden hallinta. Suunnittelu on perustunut siihen, että pohja- ja orsivesi ei saa laskea työn aikana eikä lopullisessa tilanteessa. Pohjaveden hallinta on huomioitu pohjarakennustavoissa ja kustannukset on laskettu sen mukaisesti.

Rakennusaikaiset vaikutukset

Työnaikaisia ympäristövaikutuksia aiheutuu pohjaveden hallinnasta, työnaikaisista liikennejärjeste- lyistä, melusta ja louhintatärinästä. Työn aikana syntyy suuria määriä massoja, joiden läjitys ja kuljetus on järjestettävä.

Pohjaveden hallinta on huomioitu pohjarakennustavoissa ja tunneleiden injektointiasteessa. Työnaikaisia liikennejärjestelyjä ei ole tässä vaiheessa otettu huomioon.

Ympäristövaikutusten arviointimenettely

Laajamittainen Keskustatunnelin ympäristövaikutusten arviointi tapahtuu samanaikaisesti asemakaavan laatimisen kanssa. Selvitykseen sisältyy tunnelin vaikutusalueen

- ilman laadun arvio ja pakokaasujen leviämisselvitys (Ilmatieteen laitos)
- meluselvitys
- liikenneturvallisuustarkastelu
- vaikutus kaupunkikuvaan ja kaupunkiympäristöön
- vaikutus pohjaolosuhteisiin
- vaikutus kasvillisuuteen (Kaisaniemen puisto)
- vaikutus vesistöön (Siltavuorensalmi)
- sosiaaliset vaikutukset
- rakentamisaikaiset vaikutukset

Uudenmaan ympäristökeskus on tehnyt 6.3.1998 ympäristöministeriölle esityksen, jossa katsotaan, että keskustatunnelihankkeeseen on sovellettava ympäristövaikutusten arviointimenettelyä YVAlain 4 § 2 momentin nojalla. Ympäristökeskus esittää YVAlain soveltamispäätöksen tekemistä Helsingin keskustatunnelihankkeesta.

Ympäristöviranomaiset toteavat, että Keskustatunneli ei ole sellainen hanke, joka YVA-asetuksen hankeluettelon mukaan kuuluisi YVA-lain mukaisen arvioinnin piiriin. Keskustatunneli on kuitenkin laadultaan ja laajuudeltaan sellainen hanke, että sen ympäristövaikutukset tulisi selvittää ja arvioida YVA-lain mukaisessa menettelyssä.

Kaupunkisuunnittelulautakunta päätti 28.5.1998 esittää lausuntonaan kaupunginhallitukselle, että Keskustatunnelin ympäristövaikutukset tulisi arvioida kaava-YVA:n mukaisesti osana normaalia kaavoitusprosessia.

Keskustatunnelin kustannukset

Keskustatunnelin kokonaisrakennuskustannukset ilman ALV:tä ovat noin 700 Mmk ja 15% :n ALV:1lä 805 Mmk .

Keskustatunneli välillä Porkkalankatu Mannerheimintien länsireuna maksaa noin 180 Mmk , välillä Mannerheimintie Rautatientorin liittymä noin 150 Mmk ja Rautatientorin liittymästä Sörnäisten rantatielle sisältäen Unioninkadun rampin noin 310 Mmk .

Yleisesti voidaan todeta, että ratakuilun katettu osuus on edullisinta rakentaa, sen kustannusten suhdeluku (mk / m) on 1 . Kalliotunnelin suhdeluku on 2 ja teräsbetonirakenteisen Töölönlahden alueella olevan tunnelin suhdeluku on 3.

Kustannusarviot ovat alustavia ja ne on laskettu laadittujen suunnitelmien perusteella. Kustannuslaskennan pohjana on normaali kustannustaso. Laskelmissa on mukana arvaamatonta kustannuslisää 10% sekä suunnitteluja rakennuttamiskustannuksia 9%.

Keskustatunnelin kustannuksiin on sisällytetty ne toimenpiteet, jotka elimellisesti liittyvät hankkeeseen. Sensijaan tunnelin rakentamisen yhteydessä esitetyt liikenneympäristön parantamiskohteet eivät sisälly kustannusarvioon.

Kustannuksiin sisältyvät: Porkkalankadun sillan purku muutostöineen 24 Mmk, Rautatiekatujen kunnostus puistokaduksi välillä Runeberginkatu Mannerheimintie 15 Mmk ja uudet sillat Runeberginkadun, Fredrikinkadun, Jaakonkadun, Arkadiankadun ja Mannerheimintien kohdalla 25 Mmk. Rautatiekatujen rakentaminen Leppäsuolla toteutetaan asemakaavan mukaisesti Keskustatunnelista riippumatta.

Käyttökustannukset muodostuvat tunnelin katutason puhtaanapidosta, seinien pesusta, talvikunnossapidosta, rakenteellisesta kunnossapidosta sekä LVIS-laitteiden käyttö-, huolto- ja niiden kunnossapidosta, liikenteen valvonnasta ja ohjauksesta sekä energiakustannuksista. Käyttökustannukset ovat noin 10 Mmk vuodessa.

Keskustatunnelin liikennetaloudelliset vaikutukset

Keskustatunneliin liittyvien liikenneverkkojen vaikutustarkastelu on suoritettu vuoden 2010 ennusteen perusteella. Siinä liikennemääriä ja suoritteita on verrattu nykyverkon vastaaviin arvoihin. Laskelmissa on huomioitu ruuhkautumisen vaikutukset liikenteen nopeuksiin ja tästä johtuvat vaikutukset ajoneuvojen liikkumiskustannuksiin. Niitä ovat polttonesteen kulutus, aikaviiveet ja -kustannukset. Laskelmat on suoritettu soveltaen Tielaitoksen käyttämää menetelmää Helsingin olosuhteisiin.

	$\mathrm{Mmk} / \mathrm{v}$
Ajoneuvokustannusten säästöt	16
Aikakustannusten säästöt	21
Onnettomuuskustannusten säästöt	53
Ajokustannusten säästöt yhteensä	90
Joukkoliikenteen aikasäästöt	3
Joukkoliikenteen käyttök. säästöt	2
Kustannussäästöt yhteensä 1. vuosi	95
Tunnelin käyttökustannukset	10
Nettosäästöt yhteensä 1. vuosi	85
Nettosäästöt vv. 2005 - 2035	1169
Investointikustannukset (ei ALV)	700
Hyöty / kustannus-suhde	$\mathbf{1 . 7}$
Laskentakorkokanta on 6 \%.	
Jäännösarvoa ei ole huomioitu hyöty/kustannus-suhdetta laskettaessa.	

Aikataulu ja toteuttaminen

Kaavaillun aikataulun mukaan Keskustatunnelin liikennesuunnitelma etenee kaupunkisuunnittelulautakunnasta lausuntokierroksen ja suunnitelman tarkistamisen jälkeen kaupunginhallitukseen vuoden 1998 lopussa. Kaupunginhallituksen liikennesuunnitelmasta tekemän päätöksen jälkeen hankkeelle laaditaan asemakaava. Tämä vastaa käytäntöä muissa maanalaisissa liikennehankkeissa kuten metro, pysäköintilaitokset ja jalankulkutunnelit.

Asemakaavan laatiminen ja kaava-YVA ajoittuvat vuosille 1999-2000. Samanaikaisesti laaditaan tunnelihankkeen rakennussuunnitelma ja hankitaan tarvittavat luvat ja päätökset.

Rakentaminen ajoittuu vuosille 2001-2006. Satamaradan arvioidaan poistuvan vuonna 2005. Tätä ennen toteutetaan Keskustatunnelin osuus Sörnäisten rantatie-Töölölahdenkatu ja sen jälkeen osuus Töölönlahden-katu-Porkkalankatu.

Keskustatunnelista riippumattomat maanalaiset liikennejärjestelyt voidaan toteuttaa jo lähivuosina. Näitä ovat Aleksanterinkadun alainen huoltotunneli ja Stockmannin pysäköintilaitoksen sisäänajon siirtäminen Keskuskadulta Eteläesplanadille. Liikenteen vähetessä jalankulkijan olosuhteita parannetaan Aleksanterinkadulla, Mikonkadulla, Yliopistonkadulla, Kluuvikadulla ja Keskuskadun eteläpäässä.

Keskustatunnelin rakentamisen aikana laaditaan keskustan liikennesuunnitelman mukaiset yksityiskohtaiset kävelyalueiden liikennesuunnitelmat ja katuympäristösuunnitelmat. Tärkeimmät näistä ovat Keskuskadun muuttaminen kävelykaduksi, Kaivokadun muuttaminen joukkoliikennekaduksi ja ympäristöparannukset rautatieaseman ympäristössä. Kävelyalueita toteutetaan sitä mukaan kuin autoliikennettä voidaan siirtää Keskustatunneliin.

Keskustatunnelin länsipää Porkkalankadulla

Keskustatunnelin itäpää Sörnäisten rantatiellä

Postikatu kävelykatuna Keskustatunnelin rakentamisen jälkeen

Unioninkadun rampin sijoittuminen maastoon

HENKILÖVAHINKO-ONNETTOMUUDET KESKUSTASSA

1 + 1 KAISTAINEN TUNNELI VÄLISEINÄLLÄ

$2+2$ KAISTAINEN TUNNELI VÄLISEINÄLLÄ

1 - KAISTAINEN TUNNELI

1 + 1 KAISTAINEN RAMPPI

กากฤ

4001	\} \times 1 4 0 0 \|														
															て＇\downarrow
	G $0 / 1$													uau！umis！od ueperemetes	
		тшшои	＞w山0z1	тшш02，	＞14\％0	－									
															L＇t
															\checkmark
						60								Sotereds！mełuexen－Ols	$\chi^{\prime} \varepsilon$
								14						иәu！u！！ee！uemprluuuns	し・
															ε
														$\forall M-\mathrm{enee}>$	χ^{\prime} 乙
							\bigcirc	\bigcirc	1					smıopчəелеехешәs \forall	1・て
							3	$\begin{aligned} & \text { त্か } \\ & \hline \end{aligned}$	$\stackrel{\text { 젳 }}{\text { a }}$					$\forall \wedge$ V	乙
										86／21	D			emiəuluunnsəuuə\！！！－Sux	$\nabla^{\circ} \downarrow$
														em｜ə！	
											01				$\varepsilon \cdot 1$
												\square			て＇し
												86／9		snłopчәеш｜ə！！uunnsəuиәу！！！－＞＞｜s＞	$1 \cdot 1$
														＊W7ヨ	\cdots
9002	9002	t002	$\varepsilon 002$	z00乙	1002		0002			661		8661			

